If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-56X+300=0
a = 1; b = -56; c = +300;
Δ = b2-4ac
Δ = -562-4·1·300
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-44}{2*1}=\frac{12}{2} =6 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+44}{2*1}=\frac{100}{2} =50 $
| 2(r–6)=6 | | 2x-17=(-9) | | 0.5(x-12)=2=1.25(x+8)-9.5 | | -4x+3=;5x-13-x | | p-2.5=3.7 | | 2(41/2+m)+3=4(m-3)+51/2 | | 3(a+4);a=6 | | 2x+7x9=189 | | 8-(y+5)=2y+9 | | 1206.4*x=52 | | X^2-55x+300=0 | | 12m+25=85 | | 2a+6=16= | | 1206.4x=5x | | 8x^2-49x+75=0 | | 3(x+4)=2x−1 | | x3(x+4)=2x−1 | | 3(x+2)+5=20 | | 7x-1=5x+19 | | 2a-6=16= | | X^2-55x+280=0 | | -7x+6=-5x-16 | | -8+4p=28 | | 3.82+16.18=h | | 10^3x-1+4=32 | | 6(r-4)=3r-2 | | 5(z+4=) | | 2(x+19)=57 | | -26x+40x=-28 | | 1x/5=3 | | 8+x=7x+32 | | t-184.9=-109 |